Complex operations in trigonometric form

Complex numbers are just vectors, with an x-axis of the real numbers and a y-axis of the imaginary 1\sqrt{-1} numbers. Of course, instead of a basic (x,y)(x,y) or (r,θ)(r, \theta), we just need to include the basis vectors (the default units) of our axes when we talk complex. In the x-axis, this is 11, and in the y-axis, this is i=1i = \sqrt{-1}.

”Rectangular form” is obvious: a+bia+bi comes from (x,y)(x,y).

”Trigonometric form” is a bit funkier: r(cosθ+isinθ)r(cos\theta + isin\theta) comes from…?

1 - Trigonometric form as SOHCAHTOA

Actually, it comes from a drawing of a triangle!

First, let’s draw out some complex number with magnitude rr and angle θ\theta. Connect that to the origin, and we can immediately SOHCAHTOA.

Of course, we can’t just leave things at rsinθrsin\theta and rcosθrcos\theta; we need to attach the basis vectors on. Now, the hypotenuse’s absolute value is rr, but Pythagorean Theoreming will give us an a+bia+bi.

Trigonometric form isn’t really used to add complex numbers, but it sure is used to multiply them. Why? Well, trig identities give us the opportunity to add angles, letting us escape a soup of expanded a+bia+bi binomials when we multiply. Let’s see where they come from!

Let z1=r1(cosα+isinα)Let\ z_1 = r_1(cos\alpha+isin\alpha)
Let z2=r2(cosβ+isinβ)Let\ z_2 = r_2(cos\beta+isin\beta)

1. Multiplication

z1z2=r1(cosα+isinα)r2(cosβ+isinβ)=r1r2(cosαcosβ+icosαsinβ+isinαcosβsinαsinβ)=r1r2(cosαcosβsinαsinβ+i(cosαsinβ+sinαcosβ))z1z2=r1r2(cos(α+β)+isin(α+β))\begin{align} z_1 z_2 &= r_1(cos\alpha + isin\alpha) \bullet r_2(cos\beta + isin\beta) \notag \\ &= r_1r_2(cos\alpha cos\beta + icos\alpha sin\beta + isin\alpha cos\beta - sin\alpha sin\beta) \notag \\ &= r_1r_2(cos\alpha cos\beta - sin\alpha sin\beta + i(cos\alpha sin\beta + sin\alpha cos\beta))\notag \\ z_1 z_2 &= r_1r_2(cos(\alpha + \beta) + isin(\alpha + \beta)) \end{align}

Between lines 3 and 4, we used the angle addition identities.

2. Division

z1z2=r1(cosα+isinα)r2(cosβ+isinβ) Rationalize the denominator!=r1(cosα+isinα)r2(cosβ+isinβ)cosβisinβcosβisinβ=r1r2(cosαcosβicosαsinβ+isinαcosβ+sinαsinβ(cosβ)2icosβsinβ+isinβcosβ+(sinβ)2)=r1r2(cosαcosβ+sinαsinβ+i(sinαcosβcosαsinβ)(cosβ)2+(sinβ)2)=r1r2(cos(αβ)+isin(αβ)1)z1z2=r1r2(cos(αβ)+isin(αβ))\begin{align} \frac{z_1}{z_2} &= \frac{r_1(cos\alpha + isin\alpha)}{r_2(cos\beta + isin\beta)} \quad \text{ Rationalize the denominator!}\notag \\ &= \frac{r_1(cos\alpha + isin\alpha)}{r_2(cos\beta + isin\beta)} \bullet \frac{cos\beta - isin\beta}{cos\beta - isin\beta}\notag \\ &= \frac{r_1}{r_2} \left(\frac{ cos\alpha cos\beta - icos\alpha sin\beta + isin\alpha cos\beta + sin\alpha sin\beta }{ (cos\beta)^2 - icos\beta sin\beta + isin\beta cos\beta + (sin\beta)^2 }\right) \notag \\ &= \frac{r_1}{r_2} \left(\frac{ cos\alpha cos\beta + sin\alpha sin\beta + i(sin\alpha cos\beta - cos\alpha sin\beta) }{ (cos\beta)^2 + (sin\beta)^2 } \right) \notag \\ &= \frac{r_1}{r_2} \left(\frac{ cos(\alpha - \beta) + isin(\alpha - \beta) }{ 1 }\right) \notag \\ \frac{z_1}{z_2} &= \frac{r_1}{r_2}(cos(\alpha - \beta) + isin(\alpha - \beta)) \end{align}

Between lines 4 and 5, we used the angle subtraction identities.

3. Exponentiation (DeMoivre’s Theorem)

When we have multiplication, exponentiation comes by easily.

z1z1=r1r1(cos(α+α)+isin(α+α))(z1z1)z1=r1r1r1(cos(α+α+α)+isin(α+α+α))z1n=r1n(cos(nα)+isin(nα))\begin{align} z_1 \bullet z_1 &= r_1r_1(cos(\alpha + \alpha) + isin(\alpha + \alpha)) \notag \\ (z_1 \bullet z_1) \bullet z_1 &= r_1r_1r_1(cos(\alpha + \alpha + \alpha) + isin(\alpha + \alpha + \alpha)) \notag \\ z_1^n &= r_1^n(cos(n \bullet \alpha) + isin(n \bullet \alpha)) \end{align}

4. Rooting

Rooting is a bit interesting. While we can simply supply a fractional exponent to a complex number for the initial part of the rule,

z11n=r11n(cos(1nα)+isin(1nα))z1n=r1n(cos(1nα)+isin(1nα))\begin{align} z_1^{\frac{1}{n}} &= r_1^{\frac{1}{n}}(cos(\frac{1}{n}\alpha) + isin(\frac{1}{n}\alpha)) \notag \\ \sqrt[n]{z_1} &= \sqrt[n]{r_1}(cos(\frac{1}{n}\alpha) + isin(\frac{1}{n}\alpha)) \end{align}

there is something else we have to consider: multiple solutions.

Usually, with some caveats, we prefer the “principal solution” when solving for a real number’s root, i.e.
4=2\sqrt{4} = 2 rather than 4=2\sqrt{4} = -2

However, with complex numbers we have to consider every root.
4=±2i\sqrt{-4} = \pm 2i

Let’s think about what this means, based on our exponentiation rule. Imagine a complex number of some magnitude r0r_0, that has an angle of 60°60\degree.
z0=r0(cos(60°)+isin(60°))z_0 = r_0(cos(60\degree) + isin(60\degree))

If we want to find its cubic roots, we’ll need a complex number
z=r(cos(θ)+isin(θ))z = r(cos(\theta) + isin(\theta)) where
r3=r0r^3 = r_0 and
3θ=60°3 \bullet \theta = 60\degree.

But angles are modular! They wrap around a circle!
20°×3=60°20\degree \times 3 = 60\degree
140°×3=420°60°140\degree \times 3 = 420\degree \equiv 60\degree
260°×3=780°60°260\degree \times 3 = 780\degree \equiv 60\degree

2 - The modular equality of 60 and 420

Because of the circle’s modulus of 360 degrees, we therefore discover these properties for the solution angles of zn\sqrt[n]{z}:

  • They’re spaced equally apart by 360n\frac{360}{n}
  • The smallest angle is θn\frac{\theta}{n}, and the largest angle must be below 360°360\degree (because otherwise we’d just subtract 360°360\degree anyway).

Hence, unless you prefer to use 2π2\pi over 360°360\degree, our final formula will look like this:

zn=rn(cos(θn+k360n)+isin(θn+k360n))\sqrt[n]{z} = \sqrt[n]{r} \left( cos\left(\frac{\theta}{n} + k\frac{360}{n} \right) + isin\left(\frac{\theta}{n} + k\frac{360}{n} \right) \right)

where integer k0k \geq 0 and k<nk < n (so that k360nk\frac{360}{n} doesn’t surpass 360).